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in the Off-Diagonals
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This paper considers a well-known linear system that is in widespread use.
Any comparative statics exercise that is often employed in economics can
be represented by a linear system. In order to guarantee that the solution
to this linear system is nonnegative, previous research assumed that the
coefficient matrix in this linear system was a Metzler matrix, i.e. each ofi-
diagonal entry of this matrix was nonnegative. In this paper we relax this
assumption, and apply this mathematical technique to study the profit-
maximization pricing of a multi-product monopolist.
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Introduction

This paper studies the following linear system:

Ax = b,

where A = [a;;] is ann X n matrix, and both x and b are n x 1 vectors. In the
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literature, A is usually assumed to have a negative dominant diagonal.! Under
this assumption, it is known that each element of x is nonnegative if each off-
diagonal entry of A is nonnegative (ie. @;; = O foralli and jifi % j), and
if each element of & is nonpositive {(see Propasition 2.1 below). Simon (1989)
extended this result by allowing b to have both signs in its entries {see Proposition
2.2 below). This paper aims at further extending Simon’s result by allowing the
off-diagonal entries of A to have both signs. In other words, this paper aims at
developing a mathematical method which is capable of studying cases in which
both the entries of & and the off-diagonal entries of A are allowed to have both
signs. _

The above linear system is actually in widespread use. For example, Simon
(1989, p. 217) has already noted that both Leontief’s input-output analysis of
economic systems and the Stolper-Samuelson study of world goods’ prices can
be represented by the above linear system.

More importantly, we argue that each comparative statics problem can also
be represented by the linear system. For example, consider the following non-

linear dynamic system:

d
2 = fy@.8), (1.2)

dr

where v is an # X 1 vector, ¢ stands for time, 8 is a parameter, and f isann x 1
vector-valued function. The equilibrium condition for this system is:

fy,8)y=o0. (1.3)

The comparative statics problem which studies the response of the equilibrium
value of y with respect to 8 is represented by:

of by  _of

- — 1.4
3y 30 30’ (14

where both 8f/dy, an n x 7 matrix, and f/38, an n x 1 vector, are evaluated at
the equilibrium value of y, and dy /96 isan n x I vector to be solved. Equation
(1.4) can be interpreted as the linear system (1.1): df/dy corresponds to the
square matrix A, dy /00 to x, and —3f/d6 to b.

It remains to be shown that, in studying the linear system (1.4), it is not un-
usual to assume that the matrix 8 f/9y has a negative dominant diagonal. Using
some regularity conditions specified in Beavis and Dobbs (1920, Theorem 5.19),

LA square matrix A is said to have a dominant diagonal if |a ;| > Zi# ;| for every j,
where [2;;| stands for the modubus of ;. Furthermore, A is said to have a negative dominant
diagonal if 4 has a dominat diagonal and each diagonal entry of A is strictly negative.
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the behavior of solutions to the nonlinear dynamic system (1.2) is similar to that
of the following linear dynamic system:

dy _df .
n = a ()’ - )’) ,

in a sufficiently small neighborhood of %, where § is an equilibrium point of y, 3
is unique in a certain open ball about 3, and 3f/3y is evaluated at $. Therefore,
the sufficient and necessary condition for the non-linear dynamic system to be
asymptotically locally stable is that 8 /3y should be a stable matrix (Beavis and
Daobbs, 1990, p. 151}). Purthermore, for 3f/9y to have a negative dominant di-
agonal is a sufficient condition for ensuring that 9f/8y is a stable matrix (Beavis
and Dobbs 1990, Theorem 5.30). Therefore, it is not unusually assumed that
8f/dy has a negative dominant diagonal in order to conduct the comparative
statics analysis since it is meaningless to conduct the comparative statics analysis
if the systemn is not asymptotically locally stable.

If the linear systemn (1.1) is regarded as a cormnparative statics system, then itis
not hard to imagine a case where the off-diagonal entries of A actually have both
signs. Therefore, it is important to provide a mathematical technique to study
this case. This is the main purpose of this paper.

Let us consider the following specific dynamic system to strengthen our ar-
guments:

dp(t)

dt

where p () is an 7 x 1 vector in which the i th element is the time path of the price
of the ith commodity, and f{p(t), ) is ann x 1 vector in which the ith element
is the excess demand function for the ith commodity. Let p be an equilibrium
price vector so that f(p, ) = 0 and p is unique in a certain open ball about .
In order to utilize (1.1) to study the response of the equilibrium value of p with
respect to 8, we define a;; = 8f; /dp; which is evaluated at p = p.

In this case, the “negative dominant diagonal” has a natural economic inter-
pretation: each own-price effect is negative and its modulus dominates the sum
of the moduli of its corresponding cross-price effects.

The positivity of a;; (i # j) means that the excess demand for the ith com-
modity rises when the price of the jth commodity rises. Therefore, the assump-
tion of positive off-diagonal entries means that all commodities are gross sub-

= f{p@®),6),

stitutes for each other. However, in reality, it is not uncommon for there to be
complementarities between some commodities. Therefore, in this context, it is
important to allow off-diagonal entries of A to have both signs.
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Equation (1.3) can be reinterpreted as the first-order necessary condition of
a maximization problem involving an economic unit. [n this case, Equation (1.4)
represents the comparative statics problem that characterizes how the economic
unit responds to a change in its economic environment. In this context, 3f/3y is
required to be a negative semi-definite matrix so that the second-order necessary
condition of the maximization problem will hold. Therefore, in general, 3f/3y
automatically has nonnegative diagonals. Furthermore, in Section 3 we will study
a maximization problem where it is not unusual to assume that 3f/9y has a
dominant diagonal. '

This paper is organized as follows. Section 2 presents the mathematical anal-
ysis of the nonnegativity of x. Section 3 applies mathematical results to study
the profit-maximization pricing of a multi-product monopolist. In this example,
it is assumed that there are complementarities between some of the goods pro-
duced by the monopolist. This feature will make matrix A have both signs in its
off-diagonal entries. Moreover, it is known in the literature that this feature may
give rise to some perverse results (see Section 3), and hence it is interesting to
study this case.

2 Sufficient Conditions for Nonnegative Solutions

In this section, we begin by summarizing the results already established in the lit-
erature (Propositions 2.1 and 2.2) before proceeding to present our new propo-
sitions (Proposition 2.3, Corollary 2.1 and Proposition 2.4).

If A is a square matrix with a negative dominant diagonal and if each off-
diagonal entry of A is nonnegative, then from Theorem 4.D.3 of Takayama (1985),
it follows that A is nonsingular and its inverse is a nonpositive matrix, that is,
each entry of A™' is nonpositive. Therefore we have the following proposition:

Proposition 2.1. Assume that A has a negative dominant diagonal. The solution x
of the linear system (1.1) is nonnegative if the following conditions hold:

(i) each off-diagonal entry of A is nonnegative, i.e. a;; > O foralli and j(i #
7
(ii)) b <0,ie b; <0foralli

Condition (if) of the above proposition requires that each entry of & should

be nonpositive. Simon (1989) relaxed this condition:

Proposition 2.2, (Simon 1989, Theorem 1) Assume that A has a negative dominans
diagonal. The solution x; of the linear system (1.1} is nonnegative if the following
conditions hold:
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(i) each off-diagonal entry of A is nonnegative,

(i1} b; < 0, and the modulus of b; is not smaller than the sum of positive ele-
tnents in the vector b, ie. [b;| = Y 4 g B4l

Here B = {h; by > 0} is an index set for positive components in &. Based on
this definition, ., _p |bs[ isequal to D, 5 bs.

Note that this proposition allows some elements of b to be positive. How-
ever, in order to ensure that x; is nonnegative, Condition (ii) requires that these
positive elements should be “dominated” by ;.

After summarizing the results established in the literature, let us proceed to
relax Condition (i) of Proposition 2.2. However, let us begin by defining two sets
ofindices Ry = {k : @y < 0, k #i}and C/ = [h 1 ay; < 0, b # j}
for the negative off-diagonal entries in the ith row vector @; and thejth column
vector a’, respectively. The following proposition deals with a case where some
off-diagonal entries in A are negative, but the off-diagonal entries in the ith row
vector q; are still all nonnegative:

Proposition 2.3. Consider the case where all off-diagonal entries in a; are nonneg-
ative, i.e. Ry = 0. Assume thataj; < Qand jaj;| >}, 4ci |aij| for each j. The
solution x; of the linear system (1.1) is nonnegative if the following conditions hold:

(i) @ij = Y heci lanj] forevery j #1.
{ii) b; < 0, and the modulus of b; is not smaller than the sum of positive ele-
ments in the vector b,

Praof. See the Appendix. O

Condition (ii) of this proposition is the same as that of Proposition 2.2.
Furthermore, Condition (i), like Condition (ii), also contains an idea of “dom-
inance™: Condition (i) requires that the negative off-diagonal entries in thejth
column vector should be “dominated”, in modulus, by @;;. In other words, Con-
dition (1) means that “perverse” (ie. negative) off-diagonal entries should be
dominated by “normal” (i.e. nonnegative) off-diagonal entries.

Note that the assumption “|aj;| > Ziﬁc,- lei;;| for each j” is less restrictive
than the assumption “|a;;! > Zi% jlaij| for each j ”. The next corollary is
therefore an immediate consequence of Proposition 2.3,

Corollary 2.1. Consider the case where all off-diagonal entries in a; are nonnega-
tive. Assume that A has a negative dominant diagonal, The solution x; of the linear
system (1.1) is nonnegative if the following conditions hold:
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(i) Gij = X ey lan| for every j # 1.
(it) b; < 0, and the modulus of by is not smaller than the sum of positive ele~
ments in the vector b.

In the above corollary, all off-diagonal entries in a; are assumed to be non-
negative. In the next proposition, off-diagonat entries in ¢; are allowed to have
both signs:

Proposition 2.4. Consider the case where some of the off-diagonals in a; are nega-
tive, i.e. R; 5= 0. Assume that A has a negative dominant diagonal. The solution
x; of the linear system (1.1) is nonnegative if the following conditions hold:

(i) aij 2 3 pecior, |anjl forevery j & Ry and j # i. However, the inequal-
ity should be strict if 3, cjip, |an;| > 0; and

(ii) by <0, and |b;| = EheBUR; |by!. However, the inequality should be strict
if 2 hepur, 16x] > 0.

Proof. See the Appendix. |

Roughly speaking, Condition (i} means that each “normal” (i.e., nonnega-
tive) off-diagonal entry of &; should be large enough, in modulus. Condition (ii)
has a similar meaning,.

It is important to emphasize a difference between Condition (i) of this propo-
sition and Condition (i) of Proposition 2.3. Note that a,; is nonnegative if
h ¢ C/buth € R;. Therefore, the set {anilh € C/ U R;} may contain
some “normal” off-diagonal entries. Condition (i) of Proposition 2.4 requires
that each such normal off-diagonal entry cannot be too large, i.e. @; cannot be
too large if i ¢ C’ but h € R;. However, in Condition (i) of Proposition 2.3, an
off-diagonal entry of A should be required to be srall enough in modulus only
when it is abnormal (i.e. negative).

We may wonder why the above normal off-diagonal entries of A should be .
regulated. Section 3 will provide economic intuition for this requirement in a
specific economic context.

Similarly, the set {by|h € B U R;} may contain “normal” {i.e. nonpositive)
entries of & since by, is nonpositiveif 1 € B buth € R;. Condition (ii) requires
that any such normal entry of & cannot be too large in modulus.
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3 Profit-maximization Pricing of a Multi-product Monopolist

In this section, we apply the mathematical results established in Section 2 to study
the profit-maximization pricing of a multi-product monopolist. In this example,
it is assumed that there are complementarities between some of the goods pro-
duced by the monopolist. This feature will cause matrix A to have both signs
in its off-diagonal entries. In studying this example, we will provide economic
intuition in relation to the technical conditions stated in Section 2.

In theory, a multi-product monopaolist has two alternative pricing rules. One
is the naive profit-maximization pricing rule, while the other is Ramsey pricing
which aims at maximizing consumers’ welfare subject to a break-even constraint
(e.g., Bos 1989, Ch.8). Naive profit-maximization pricing itself is not interest-
ing since, in reality, every monopolist is regulated by the government in some
way. However, it is known that both pricing rules share the same price structure,
even though price levels differ (Bos 1989, p. 189; Chang 1996, p. 285; Chang and
Chang 2001, p. 367). Accordingly, in order to avoid unnecessary complexities,
it is better to analyze profit-maximization pricing than to directly study Ramsey
pricing, since what we care about is the price structure rather than the price level
when the pricing rule of a multi-product monopolist is examined. This is exactly
the approach utilized by Chang (1996) and Chang and Chang (2001) to simplify
the analysis of Ramsey pricing. Furthermore, it should be noted that Ramsey
pricing is actually closely related to network-access pricing. For example, Section
6 of Chang (1996) demonstrated that a typical network-access pricing problem
was in essence a Ramsey pricing problem.

Imagine that a multi-product monopolist produces goodsg = (g1, -+ , gu)s
charges prices p = (p1, -+ -, pa), and that the cost of producing output vector
q is C(g). Therefore, the profit function is

prqf(p) — Clg(p)), (3.1
i=1
where g; () is the demand function for good i.
The first-order necessary condition for the profit-maximization problem can
be written as follows:

n
ag; .
qi(p) + Z (pj — mcj) 8_?(‘0) =0, forall i, (3.2)
j=t !

where mc; = 0C(g)/8qg; is the marginal cost of producing ¢;. The first-order
condition (3.2) can be rewritten as the linear system Ax = & if we state that
a;; = 3q;/0pi, xi = p; —me, and b; = —g;.
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In this context, some of the off-diagonal entries of A are automatically non-
positive if there are gross complementarities between some goods. Furthermore,
throughout this section, it is assumed that 3g; /3p; < 0 forall j, and hence each
diagonal entry of A is negative. Therefore, A has a negative dominant diagonal if
each own price effect dominates its corresponding cross price effects in the sense

that |8g;/8p;| > Zkﬁ 10qi/9p;| for all j.

3.1 Nonnegative Profit Margins

The term p; — mc; is referred to as the profit margin of good i. It should be
noted that in Ramsey pricing literature it is important to determine the signs of
the profit margins (Chang 1996, footnote 2; Chang and Chang 2001, p. 367).
Chang and Chang (2001) studied a case where the goods are gross substitutes
for each other, and established sets of sufficient conditions that guarantee that
Ramsey prices exceed their corresponding marginal costs. However, it is known
that if a good is a complement to some of the other goods, then its profit margin
tends to be lower (Tirole 1988, p. 70}, and hence its profit margin is more likely
to be negative (Bds 1989, p. 200; Chang and Chang 2001, p. 366). Therefore, it
is important to find sufficient conditions that can guarantee that such a profit
margin will be nonnegative in a case where gross complementarities in fact exist.

Note that, in the context of the profit-maximization problem, R; is an index
set for the complements of good 7, and C/ is an index set for the complements of
good j.? Because every element of b is non-positive, B = . Therefore, applying
Propeosition 2.3 to the profit-maximization problem straightforwardly yields the
following corollary:

Corollary 3.1. Consider the case where good i is a substitute for each of the other
goods in the sense that 8q;/dp; > 0 for every j 7 i. Assume that dq;/dp; < O

and that |9g;/dp;| > Zk¢cj |8qx/0p;| for each j. The profit margin of good i
is nonnegative if the following condition holds:

(i) 8g;/8p;i = 3 heci |0q;/0pn! for every j # 1.

In a nutshell, Condition (i) means that the effect caused by the complemen-
tarities between the goods is relatively small. Because this complementarity effect
is the only effect noted in the literature which may lead to a perverse result, it is

2Due to income effects, dq;/0p; and dg; /Op; may have different signs (i #* ). If8g;/9p;
and 8¢; /dp; share the same sign for every i # j, then ck = Ry, for every k.
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intuitively plausible to utilize this condition to ensure that the profit margin of
good { is positive.

Applying Proposition 2.4 to the profit-maximization problem yields the fol-
lowing corollary:

Corollary 3.2. Consider the case where good I is a complement to some of the goods
produced, i.e. R; # 0. Assume that |3q;/dp;| > Zk# |8qr/dp;| forall j. The
profit margin of good i is nonnegative if the following two conditions hold:

(i) 8g;/8pi > Y heciur, 109;/9pni forevery j ¢ Ri and j # i; and
() @i > Dper, b

Condition (i) of this corollary is similar to that of Corollary 3.1. However,
there is an important difference. Note that dg;/dp; is nonnegative if h ¢ C/
but i € R;,ie. good & is a substitute for good f, but a complement to good i.
Condition (i) of this corollary requires that each such nonnegative cross-price ef-
fect cannot be too large. In other words, Condition (i} of this corrollary requires
that dg; /dpy cannot be too large in modulus if good % is a complement to either
good j or good i. By contrast, the modulus of 3g; /dp,, should be regulated only
when good A is a complement to good .

Before proceeding to interpret Condition {ii), let us take a closer look at what
may motivate the monopolist to price a good below its marginal cost. The main
motivation to price a good below its marginal cost is that this low price raises
the demand for those goods which are complements for the good, and hence the
profit sacrificed by lowering the price of the good can be compensated for by the
profit gained from increasing the demand for its complements.

Condition (if} means thatit is less worthwhile pricing a good below its marginal
cost if the demand for this good itself is high enough, relatively speaking. This is
intuitively plausible since it is not easy to compensate for the profit sacrificed by
a good for which demand is relatively high. Condition (if} therefore implies that
it is less likely that a good for which demand is high will be cross-subsidized.’

Compared with the literature, Corollaries 3.1 and 3.2 are new results.*

3A good is said to be cross-subsidized by the other goods if its profit margin is negative while
the profit margins of the other goods are positive.

4 According to Proposition 2.1 of Chang and Chang {2001 ), the profit margins are nonnegative
if either one of the following conditions holds: (i) all products produced by the moncpolist are
compensated substitutes for each other; (ii} the products produced by the menopolist are quasi-
separable from the other goods; (iii) the products produced by the monopolist are weakly separable
from the other goods and the sub-utility function of the products produced by the monopolist is
homothetic. Our Corollaries 3.1 and 3.2 cannot be derived from this proposition.
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In what follows, we utilize a more specific example to further illustrate the
above two corollaries, In particular, this specific example aims at demonstrating
the economic intuition behind Condition (i) of Corollary 3.2 since this condition
seems quite complex. Assume that the goods produced by the monopolist can
be divided into two groups — Group 1 contains goods 1 and 2, and Group 2
contains goods 3, 4, - - - , 7. Goods 1 and 2 are gross complements for each other.
Any two goods in Group 2 are gross substitutes for each other. Moreover, good {
and good j are gross substitutes for each other if they do not belong to the same
group. In short, only d4,/3p; and 8¢, /dp, are negative in all of the off-diagonal
entries. We also suppose that matrix A has a negative dominant diagonal.

Note that C/ = @ if j > 3. Corollary 3.1 implies that, for any good i
belonging to Group 2, its profit margin is nonnegative if 8q; /3p, = |dg./0p |
and dg;/9p, = |0g,/0p:|. It is easy to interpret these two conditions.

Corollary 3.2 is next applied to derive sufficient conditions of nonnegative
profit margins for goods in Group 1. Condition (ii) implies that only one good
in Group 1 can be guaranteed to have a nonnegative profit margin. For example,
if g, > gq.then it is clear that only good 1 satisfies Condition (ii}.

Let us assume that ¢, > g2. Condition (i) implies that the profit margin
of good 1 is nonnegative if dg;/0p, = 0q;/dp, for every j > 3. The posi-
tive externality noted by Tirole (1988, p. 70) can be applied to explain the above
condition. Raising the price of any good in Group 1 generates, based on the def-
inition of gross substitutability, a positive externality to each good in Group 2 in
the sense that it raises the demand for each good in Group 2. Condition (ii} im-
plies that raising the price of good 1 generates a greater positive externality than
raising the price of good 2, and hence it is more desirable to raise the price of
good 1.

3.2 Comparative Statics

This subsection focuses on how an exogenous change in demand affects the op-
timal profit-maximization prices. For example, this subsection aims to address
the issue of whether the price of good i should be increased if the demand for
good { is exogenously raised.

Each entry of b is nonpositive in each case studied in Subsection 3.1. By
contrast, in this subsection we will study a case in which b has both signs in its
entries. Let g{p, #) be the Marshallian demand for ¢ where, in the notation, &
is emphasized to be an exogenous parameter affecting g. Therefore, the profit
function is:
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n
M(p,0) =Y pjq;(p.6) — Clg(p,O)).
j=l

The first-order necessary condition for profit-maximization is 8I1(p, 8)/3p =
0. The comparative statics system which characterizes how the optimal price
vector responds to a change in 8 is as follows:

a?T dp . 811

9p*d6  avop
Note that the second-order necessary condition of the profit-maximization prob-
lem requires 8°I1/3p?* to be negative semi-definite.

The sign of dp/d@ can be unambiguously determined if only a single good
is produced by the monopolist. In this single-product case, 3*I1/dp* is a non-
positive scalar. Therefore, from (3.3) it follows that dp/d6 shares the same sign
as 8°T1/300p (except when 3°T1/3p* happens to be zero, an extreme case which
we do not want to consider). Accordingly, the optimal price should be raised (i.e.
dp/d8 = 0)if 8°T1/308p = 0.

Similarly, it is easy to show that the sign of dp;/df can be unambiguously
determined (namely, dp; /d® shares the same sign as 8°T1/308p;) if all of the
demand functions are independent of each other (i.e. dg;/3p; = 0 for every
J#Fi.

We next consider a case where three products are produced by the monopo-
list. It might be convenient for us to work with a cost function C{g) that takes a
linear form as defined by

(3.3)

Clg) = g + 2g2 + €23,
where ¢; is the constant marginal cost of producing g;. The demand functions
are assumed to be as follows:
qi(p,8) = g(0) +61:pr +812p2 + S13 Py,
G2(p, 0} = g00) + éupi + dnps + dups,
g3(p, 0) = g3(8) + dup + 8202 + 3 ps,
where intercept g;(#), in the notation, is emphasized to depend upon 8, and

the coefficient 8;; is a constant. Under these assumptions, Equation (3.3) can be
expressed as a linear system Ax = b:

28 812+ 831 i3+ 63
82 + 812 2062 S +dn |,
Sy + 813 8 +08n 205

211
ap?
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gp  [dP/d0
x=—o= | dp/do ),
dps/d6
—3g,(8)/96
321—1 gl
b=—go== | ~08:(0)/08
P\ —8g:00)/06

Note that, in this case, A is a symmetric matrix.

Suppose that, for each commodity, the own-price effect exceeds, in modulus,
the sum of its cross-price effects, i.e. |8;;| > ZE# 6] for every j = 1, 2,3,
and |8;;| > zj#f |8;;] for every i = 1,2, 3. It follows that A has a negative
dominant diagonal.

We next study whether the prices should be increased if the demand for each
good is increased {i.e. dg;(0)/30 = 0 for all i). If all of the goods are gross sub-
stitutes for each other, then each off-diagonal entry of Als nonnegative. Propo-
sition 2.1 thus implies that, in this pure substitution case, each price should be
raised (i.e. dp;/df = 0 for all {) if the demand for each good is increased.
The intuition runs as follows. Recall that each price should be raised when all of
the demand functions are independent of each other. Furthermore, gross substi-
tutabilities between the goods will reinforce the incentive to raise prices since an
increase in the price of one good will further increase the demand for each of the
other goods.

Hereafter, we consider a case where there exist complementarities between
the goods. It is assurned that all of the goods are gross substitutes for each other
except that good 2 and good 3 are gross complements for each other;ie. 82 < 0,
8 < 0,8; = 0(j = 2,3),and §;; = 0 (i = 2,3). Note that, in this case,
an increase in dernand for one commodity may decrease the demand for another
good, For example, if an exogenous increase in demand for good 2 causes its
price to rise, then, based on the definition of gross complementarity, the demand
for good 3 will fall.

In short, if there exist gross complementarities, then some optimal prices
might fall even when the demand for each good is raised. Therefore, it is impor-
tant to determine whether prices should be raised in such a case. We now have
the following corollary:

Corollary 3.3. Consider the case where there exist three goods, and the demand for
each good is exogenously raised, i.e. 0g;(0)/98 > O foreveryi =1, 2, 3. Assume
that |8;;] > 3 ,.; 18| for every j = 1,2,3, and |8;;| > Z#i |8:5] for every
i =1,2,3. Wehave
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(i) dp,/de = 0if the following condition holds:

(a) a1z = 812 + 82 > |6y + 82| = lasn| and a3 = 63 + 83 >
|823 4~ d3z| = |aul.

(i) dp,/dO = 0 if the following two conditions hold:

(b) az = 8y + 612 > 813+ &3 = aay,
(c) 0g:(8)/80 > 8g;(8)/d6.

Proof. We have B = (@ since every component of b is non-positive. Applying
Propositions 2.3 and 2.4 to this problem yields the results. O

The inequality dp; /d€@ > 0 has sufficient conditions which are similar to Con-
ditions (b) and {c). Therefore, these sufficient conditions are omitted.

Condition (a) means that the complement effects between goods 2 and 3,
in modulus, are relatively small, compared with each relevant substitution effect.
Since, as mentioned above, these complement effects are the only effects that may
prevent the optimal price of good 1 from being raised, it is intuitively plausible
to have this condition.

Condition (b) means that an increase in the price of good 1 gives rise to a
greater positive externality upon good 2 than upon good 3. It is thus plausible
that this condition works in favor of good 2 since good 1 is assumed to have an
increase in demand. Tt is easy to interpret Condition (c) since it means that the
demand for good 2 is higher than that for good 3.

The following corollary studies the case where the demand for both goods 2
and 3 increases while the demand for good 1 decreases:

Corollary 3.4. Consider the case where there exist three goods, and the demand
for good 1 is decreased, i.e. 0g,(8)/00 < O, but goods 2 and 3 have increases in
demand, i.e. 0g;(6)/90 = 0 fori = 2,3. Assume that |8;;| > Zi?ﬁj |8;;] for
every j = 1,2,3, and that |8;;| > Z#i |8;;] for every i = 1,2, 3. We have
dp,/d6 = O if the following two conditions hold:

(i) an =8+ 8 = 83+ 83 = a3, and
(ii) 8g,(0)/06 > dg;(0)/30 + |3g,(8)/06|.

Proof. In this case, b; < 0 ({ = 2,3),and b, > 0. By applying Proposition 2.4
to this comparative statics problem, we can derive the above conditions. O
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This corollary provides sufficient conditions guaranteeing that the optimal
price of good 2 should be raised (because good 2 and good 3 are symmetric,
good 3 has similar conditions). However, we cannot find sufficient conditions
guaranteeing that the optimal price of good 1 should be raised. This inability is
not surprising since, in this corollary, good 1 has an decrease in demand, com-
pared with Corollary 3.3.

Condition (ii) has similar reasoning with Condition (c¢) of Corollary 3.3.
Condition (i) is actually identical to Condition (b) of Corollary 3.3 since q;, =
ay and a3 = as. However, Condition (i) is counter-intuitive since it is ex-
pected to work against dp,/df > 0 when good 1 has an decrease in demand, as
is assumed in this corollary.

Appendix

1 Proof of Proposition 2.3

Here we take I = r2. Assume that x,, < 0. [t will be proved that this assumption
leads to a contradiction,

It is assumed that m(0 < m < mn — 1) entries of x|, X3, -+ , Xp_; are
negative. For the case withm = 0, x, > O for every 2 # n. The condition
an; = Oforevery j # n, together with a,,, < 0, implies that the inner product
of a, and x is strictly positive, L.e.,, (@1, -+, @) - (X1, +-, X4} > 0. This
contradicts b, < 0, since b, is equal to the inner product of @, and x.

For the case where m # 0, it is assumed, without loss of generality, that
X1, '+, X are negative, and that the other n — 1 — m entries are nonnegative,
The row operation, based on summing up a, and the first m rows a,, - -+ , G,

yields

m m m
bn+zbh = | an +Z:akl:"‘ y @nn +Zahn (X, Xa)
h=| h=1

h=1

Note that the terms @y + 3 o @nis* " s Gum -+ 2 gy Gnm AN G+ Y o) Ahn
include diagonals ayy, « - - , G and ay,y,, respectively. As a result, given that A
is a negative dominant diagonal matrix, it follows that all of them are negative.
Furthermore, Condition (i) implies that the other entries a,; + 3 5 ay; (j =
m =+ 1,...,n — 1) are nonnegative. Therefore, the inner product of the two
vectors in the above equation is positive, and hence b, -+ Z;LI by > 0. This
contradicts b, + > _;_, by < 0, which follows from Condition (ii). m]
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2 Proof of Proposition 2.4

We begin by presenting the following two lemmas before proceeding to prove
Proposition 2.4.

Lemma A.1. Assume that A has a dominant diagonal. Ifm(0 < m < n) diagonals
of A are négative, then the sign of the determinant of A is the same as the sign of

(—=D"

Proof. Let J = {j; a;; < 0} denote the index set of negative diagonals of A,
and its number of members, |J| = m (0 < m < n). We define a corresponding
positive dominant diagonal matrix C so that the j th column vector ¢/ is equal
to —a’ if j € J and to @/ otherwise. Then, det A = (—1)" det C. Price (1951}
demonstrated that for any positive dominant diagonal matrix C, det C > 0.
Clearly, the sign of det A is the same as the sign of (—1)™. O

The original linear system Ax = b can be examined by working with the
augmented matrix:

ay -+ Qi | by
[AlB] = o | . (A1)

Gry = Gun | By

Applying the Gaussian elimination for the first row to Equation {A.1) yields the
row-reduced augmented matrix:®

ay ap cam | b
0 a(l) 1) | b(l)

R
0 a(” e a) | B

nn

where everyi = 2and f > 2,

an a

ap bl)

() ap aiy aif a;) aj bi

a =ay;— —a = ———, b(l) by — —b =

‘ an an an i
Similarly, applying the Gaussian elimination for the second row to the above
augmented matrix yields the second-ordered augmented matrix

3The Gaussian elimination is the procedure for row-reducing the coefficient matrix to the re-
duced row echelon form. This operation can be easily checked in any textbook on linear algebra,
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an anp asz - a4 | b
[{}] (1) (0 ()
0 ay ay - a2(n.) | &5
3 7 9
0 0 aa(s) cre g | bg) ,
: : : . A
2
0 0 a2 o | 4P

where for everyi{ > 3and j > 3,

ay i 4

L) (1)
Gn Gy 4z Gy G
m O .
a® = g0 _ G qy _ 172 o ai ap 4 4
i T i () 2] ) s dll
. ay as, an  an
dyr an
ay anp b
1) (N
az by day an b
(1 M p0 @ am b
p@ — p _ _C_liib(l) %2 % |an diz b
P m-2 = ) =
50 Qg9 an apz
dy Az

By continuing this process step by step, an r-ordered augmented matrix,

{a“ Qi o Ay Qs o am | b
o el W

: : . A
0 0 e o e a |
0 0 - 0 al o a1 B2
. 0 : N
\ 0 0 - 0 a,(:£+, e gD | b0 )

is obtained.

In the following lemma, we will derive the values of the nonzeroe entries g

and b§’) in Equation (A.2).

(A.2)

")
ij

Lemma A.2. According to Equation {A.2), the nonzero entries of the augmented
matrix dfter the r-ordered Gaussian elimination are al-(}’) = |A};|/|A”| and b,fr) =
|A,I/|A" foreveryl <r <n—1,i>r+ 1, and j > r + 1. Here A" stands
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for the first ¥ X r submatrix of A:

AT =

Gy <" Qry

Furthermore, Atfj and A}, denote the bordered matrices obtained from A™ by row
(@y, - -, Qir, aij) and column (ayj, - - - , arj, aij), and by row (ap, - - - , @ir, bi)
and column (by, - - - by, by ), respectively.

Proof. We prove that the nonzero entries in Equation (A.2) can be expressed as
af’ = |AZ|/|A™], and BV = |AR|/|A™). Em = 1,a]) = |ALI/IA"),
whlch is certamly true. Next, if we assume that m — 1 is valid, then we would like

to show that # is true. We obtain

a&";':’ ai " |Ana'] 1AR
2 a, " ay " A Ay
N e R VE Vv
|Am 1 _lAI_ﬂ—
im
|Am | |Ar.n.—l
[am=Tage ] A

where the last equality follows from Jacobi’s ratio theorem (see Murata, 1977,

(m—1) b(m 1}
p-7). Slm:larly,wehaveb( ™ = Z(m " b(m 0 /a(’" V= |A%LI/|1A™]. O
im

Proof of Proposition 2.4

After establishing the above two lemmas, we are now in a position to prove
Proposition 2.4. Here we take { = n. If we assume that x, < 0, it will be
proved that this assumption leads to a contradiction.

It is assumed, without loss of generality, that B, = {1,2,--- ,r}{l = r <
R—1),le a, < 0(j = 1,2,---,r). Only the signs of x4, -+, Xp—
are of concern because the first r entries of the row vector @, will be replaced
with zero elements by Gaussian elimination (recall that x, has already been as-
surmed to be negative). Assume that the first m entries of x4y, -+, xy—, are
negative, and that the remaining n — 1 — » — m entries are nonnegative {(m =
0,1,--+,n —1—r). The row operation based on the sum of g, and the first m
TOWS Gppy * * ¢y Oy 18
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( an - 4y Qe+l 0 G | b \
L2 Qrps1 = G | by
Arit) 0 Gy Qe 00 Gegrn | Drg
Arim,| = Qrdmr Qptmyr+1 " Grdmn | Brim
ptl " p—iyr On—lyr41 ‘- Guein | Baoa
Gp1 -+ Oy Qpnr+1 " Cpn | Ba

+ +im .
where «,; = by + ZZ=T+1 @pj, and By = bn + E::=r+l by. Applying the r
th-ordered Gaussian elimination for this new augmented matrix, we can derive

. [P
the values of the nonzero entries ' (j =7 +1,--- , n) and B by means of
Lemma A.2:
apg - dir 4y
Ary Gy Gy n
AT,
) Opy » v Opr Oyj- nf )
@, = = foreveryj = r+ 1, and
auo«-- 4y |A]
(] vy
a car b
[£75] < arr by "
r
ﬁ(r) Uyt Our B nb
no = -
g e Qi |A”]
arl * (3%

The next siep is to apply Lemma A.1 to study the signs of cxg) and B, A" is

a matrix with a dominant diagonal since A is assumed to be a dominant diagonal
matrix. Furthermore, /ifl ;s also a dominant diagonal matrix if @,; dominates
aij, a2, - arj, Lo o] > 30, laij|. Therefore, Lemma A.1 implies that
a,i;-) and @p; share the same sign if ,; dominates @, @y, + - @y;. Similarly,
B,E") and B, share the same sign if 8, dominates by, -+ , b;.
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Fj=r-+1,,r+mthenay = aj +an + Zk_r+1 az; includes a
htj

diagonal of A, namely, @;;. This implies that ary,; is negative and that &,,; dom-
)

inates a;;, 4,5, + + + arj. Therefore, we have O < 0. Similarly, o (’ ) < 0, since
&y, includes a,,.
Hj=r+m+41,---,n — 1,then j ¢ R,. Therefore, Condition (i)

. . -+ . . .
implies that cp; = ap; + ¥ per., @nj is nonnegative and that &,; dominates
5 j h=r+1 @by & nj

€h, Qaj,  +~ arj. As aresult, oz,(l)

; = 0. Condition {ii) implies that f8, is negative

and that 8, dominates b,, - - - , b,. Therefore, ,6,(?” =< 0. However,
) r) ) (r)
Brgr) = (O’ * 0 O:’n e I an,r—{-mv an,r+m+l’ ot nrn R (?‘))
(xls e 1xn) > 0.
This contradicts Bﬁ") <0 O

Remark: We usually utilize the conventional Cramer’s rule to solve a linear sys-
tem like (1.1). Therefore, it is important to compare Cramer’s rule with our
method. The solution x; obtained by Cramer’s rule is equivalent to applying the
Gaussian elimination for the other 2 — 1 rows to A and then solving the equa-
tion a(" Vx b(" Y One advantage of Proposition 2.4 is that it only requires
applying the Gaussian elimination for 7 rows, where r is the number of R; ele-
ments.
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